Laser Pointer

Jeb Duncan, Eddie Hoopingarner, Cole Middlebrook, Michael Orrill

12/4/2013

Overview

- Client Background
- Project Overview
- Need and Constraints
- Concept Generation
- Chosen Design
- Analysis
- Cost Breakdown
- Schedule
- Conclusion

Client Background

Client: Mr. Edwin Anderson

Support Systems Analyst for NAU Physics Department Hosts astronomy talks to large groups using laser to point out stellar bodies

Need Statement

Mr. Anderson is unable to give star gazing talks to large groups of people because the laser isn't powerful enough. More powerful lasers are too dangerous to be handheld.

Project Goal

The goal of this project is to design and construct a mechanism to safely focus the attention of an audience towards individual stars or constellations while observing the night sky.

Objectives

- Controllable laser pointer mechanism
- Laser pointer mounting elevation above ground greater than 6' 5"
- Pointer resolution at 1/2°
- Collapsible to fit in cargo compartment of a small car 48"
- Weight One person mobility 100 lbs
- Rapid response time 24°/second

Operating Conditions Locations:

- NAU Observatory grounds
- Buffalo Park
- Heritage Square
- Various schools

Weather Conditions:

- Typical Flagstaff year round night conditions
- Low temperatures, > -5 °F
- Medium-high wind speeds, Max = 30 mph

Constraints

- Must operate in safe manner i.e. no possibility of laser beam pointing into a person's eyes
- Laser must toggle on and off upon user command
- Laser unit must be removable from device
- Must remain within allowable budget
- Must comply with all local, state, and federal regulations

Regulation

- AZRRA AZ Radiation Regulatory Agency
 - Actively conduct inspections
 - Need administrative control of laser
- Legal compliance:
 - Controlled storage and use
 - Labeling
 - Training

Michael Orrill 8

Concept 1 Hand Held Unit

Cole Middlebrook 9

Cole Middlebrook 12

Concept Selection

Weight	5	3	3	2	5	18	
Weight Percent	28%	17%	17%	11%	28%	100%	
System Design	User Control	Mechanical Design	Manuverability	Cost	Electrical Design	Score	Visual score
Hand Held	5	1	5	5	3	3.8	
Tablet Control	3	3	3	1	2	2.5	
Smart Phone Control	5	3	3	3	2	3.3	
Motion Sensor	4	3	3	3	1	2.7	
Joystick Control	2	3	3	5	5	3.5	

Decision Matrix

Scale: 1-5 1 = Least Desirable

5 = Most Desirable

Cole Middlebrook 14

Chosen Design Joystick Camera Turret

- Laser Pointer in Delrin Case mounted to Camera Turret
- Camera Turret mounted inside Laser Beam Blind
- Laser Beam Blind and Camera Turret mounted to Tripod

Chosen Design Insulated Tripod Mounted

Chosen Design Camera Turret

- Delrin case mounts directly to turret
- Allows for 360° Pan and 360° Tilt
- Quick attach mounting to tripod
- Integrated switch mechanism built into joystick control

Chosen Design Laser Beam Blind

- Constrains laser beam below 30° above horizon
- Allows full motion of turret
- Mounts over quick attach bolt from turret

Chosen Design 78 Inch Tripod

- Quick attach mounting
- Functional at full height only
- Level adjustment in head

Analysis

- Purchased components are not analyzed
 - Tripod
 - Item is going to be purchased
 - Maximum capable load 12 lbs.
 - Turret weight including laser assembly ~ 6 lbs.
 - Turret
 - Item is going to be purchased
 - Maximum capable load 5 lbs.
 - Estimate of laser assembly weight ~ 0.53 lbs.
- Thermal Analysis carried out on laser housing

Thermal Analysis

Motivation: Laser must remain within operating temperatures Assumptions:

- Approximate coldest comfortable temperature for presentations: -5°F
- Laser pointer temperature isothermal
- No contact resistance from laser surface to polystyrene insulation
- Ambient wind in cross flow, 30 mph, used to find average value for heat transfer coefficient (h)

Thermal Analysis

Derived equation for total heat loss in our system:

$$q = \frac{T_{i} - T_{\infty}}{\frac{1}{L\pi} \left[\frac{1}{hD_{0}} + \frac{ln\frac{r_{2}}{r_{1}}}{2k_{ins}} + \frac{ln\frac{r_{3}}{r_{2}}}{2k_{shell}} \right]}$$

q = 0.35 W

Thermal Analysis

Ansys temperature distribution:

Transient Thermal Analysis

Temp initial: 70°F Ambient Temp: -5°F Time for laser to reach 32°F: 24.64 minutes

$$\theta^* = C_1 exp(-\delta^2 F_o) cos(\delta_1 x^*)$$

 θ^*

C₁ δ1

$$F_o = \frac{\frac{k}{\rho C_p} t}{r_0}$$

$$= \frac{(T_0 - T_{\infty})}{(T_i - T_{\infty})}$$

$$= 1.1539$$

$$= 1.0873$$

$$k = Thermal conductivity of air \left[\frac{w}{mK}\right]$$

$$\rho = Density of air \left[\frac{kg}{m^3}\right]$$

$$C_p = Specific heat of air \left[\frac{kJ}{kgK}\right]$$

$$r_0 = Radius of cylinder [m]$$

Equipment to be Purchased

Component	Supplier	Part #	Cost [\$]	Shipping [\$]	Tax [\$]	Total [\$]
Davis and Sanford 78'' Tripod	Amazon.com	N/A	189.95	21.95	0.00	211.90
RCA Cable	Amazon.com	N/A	12.15	7.25	0.00	19.40
.0589'' Sheet Metal	Ace Hardware	N/A	30.99	0.00	2.62	33.61
PT5 Camera Turret	Camera Turret	PT5	839.00	22.00	0.00	861.00
Auxiliary Power Button	Camera Turret	N/A	0.00	0.00	0.00	0.00
Delrin Rod Stock 1'	McMaster Carr	8572K32	26.30	8.00	0.00	34.30
1/2'' Electrical Conduit 5'	McMaster Carr	7126K11	1.55	8.00	0.00	9.55
Aluminum Stock 1 1/4'' X 1' X 3/4''	McMaster Carr	8975K487	8.74	8.00	0.00	16.74
M1.4 X .3 - T5 Drive Screw	McMaster Carr	94209A111	9.38	3.25	0.00	12.63
Blind Rivet 3/16''	McMaster Carr	97525A485	10.34	3.55	0.00	13.89
Heater	Measurement Specialties	Custom	10.00	3.50	0.00	13.50
RCA Cable to Quick Connector	Radio Shack	N/A	7.50	4.50	0.00	12.00
Solenoid	Deltrol Controls	53648-81	40.00	12.00	3.38	55.38
Solenoid Cover	3-D Printer	N/A	0.00	0.00	0.00	0.00
Contingencies	Unknown	N/A	100.00	N/A	N/A	100.00

Grand Total [\$]

Jeb Duncan 25

1393.90

Project Plan

Final Fall 2013 Gantt Chart

G			2013	Del	liverable: D	eliverable: Con	cepts and Designita	2014 tion and Project Pr	roposal
Name	Begin date	End date	September	l October		 November	l December	l January	l February
0	9/17/13	10/8/13			deet with C	lient: Needs / C	opstraints		
0	10/1/13	10/8/13			DED	inenii: Needor o			
0	10/2/13	10/8/13			Project Pla	n: Gantt			
0	10/9/13	10/9/13		•	Deliverabl	e: Needs/Specs	/Plan		
	10/14/13	10/28/13				Concept Gene	ration / Selection Re	port & Presentatio	n
0	10/9/13	10/28/13		TE		Generate Desi	on Ideas		
0	10/21/13	10/28/13				Decision Matrix	×		
٥	10/22/13	10/28/13		_		Client Meeting	: Design Selection		
0	10/29/13	10/29/13			•	Deliverable:	Concepts and Desig	1	
Θ	10/29/13	11/18/13		_			ngineering Analysis	Report / Presentati	ion
0	10/29/13	11/18/13				A	insys Analysis: Struct	ura	
0	11/19/13	11/19/13				•	Deliverable: Engine	ering Analysis	
0	11/19/13	12/2/13					Final Presen	tation Prep	
٥	11/19/13	12/2/13					Ansys Analys	is: Thermal-fluid	
0	12/3/13	12/3/13					Final Prese	ntation and Project	et Proposal
0	9/18/13	12/12/13		-		_	1 Websi	te Creation	
0	12/13/13	1/30/14							Order Parts

Jeb Duncan 26

Project Plan

Preliminary Spring 2013 Gantt Chart

Jeb Duncan 27

Conclusion

- Mr. Anderson needs a safe way to operate a 20 mW laser for guided talks about the night sky
- 5 concepts were generated and the remote joystick design was chosen
- Thermal analysis was conducted and results showed a small heating element is needed to maintain operating temperatures
- Final parts inventory total is \$1393.90, well below the allotted \$3000 budget
- All parts are ready to be ordered and project is on schedule to be completed by April 2014

References

- [1] lordwhimsey, . "People pointing vector." VectorStock.com. N.p.. Web. 9 Dec 2013. < http://www.vectorstock.com/royalty-free-vector/people-pointing-vector-6316>.
- [2] "Picture of the Day." *www.Mikesjournal.com.* N.p.. Web. 9 Dec 2013. http://www.mikesjournal.com/July2010/iPadEclipseStarWalkApp.htm>.
- [3] "Nintendo Wii Remote Jackets Free Sample | Gadgets & Apps Sample.net." Nintendo Wii Remote Jackets Free Sample | Gadgets & Apps Sample.net. N.p., n.d. Web. 10 Dec. 2013. http://www.sample.net/prod/gadgets-apps/nintendo-wii-remote-jackets-free-sample-453.html.
- [4] "CAMERA TURRET TECHNOLOGIES, INC.." PT5 Motorized Pan and Tilt System. N.p.. Web. 9 Dec 2013. http://cameraturret.com/pt5.htm.
- [5] "Playstation Move Controller Black (PS3)." : Amazon.co.uk: PC & Video Games. N.p., n.d. Web. 10 Dec. 2013. http://www.amazon.co.uk/Playstation-Move-Controller-Black-PS3/dp/B003R7KV16>.
- [6] "Davis &Sanford ProVista F12." *http://www.tiffen.com/*. Tiffen Company. Web. 9 Dec 2013. <http://www.tiffen.com/userimages/D&S Product Sheets/D&S_ProVistaF12_ss.pdf>.
- [7] "Delrin, acetal resin." . Dupont. Web. 9 Dec 2013. http://plastics.dupont.com/plastics/pdflit/americas/delrin/230323c.pdf>.
- [8] Incropera, Frank P. Fundamentals of Heat and Mass Transfer. New York [etc.: John Wiley & Sons, 2006. Print.
- [9] R.C. Hibbeler, "Kinetics of a Particle: Force and Acceleration," in *Dynamics,* 12th ed. Upper Saddle River, New Jersey, Pearson Prentice Hall, 2010, ch. 13

Jeb Duncan 29

Questions?

Structural Analysis

Physic	cal	Electrical			
Dimensions (WxHxD)	10" x 14" x 4"	Power Supply	110-230 VAC to 12 DC 1000 MA		
Weight	4.5 lbs.	Connector	5.5 X 2.1 center Pos.		
Cable Length	12 Feet	Capabilities			
Mounting	Upright or Inverted	Slowest Speed	1 rev in 10 minutes		
Mounting Plate	3" x 3" with 3/8" hole	Max Speed	4 RPM @ 12 V		
Contr	ols	Pan Revolution	360° +		
2 Axis Thumbstick P/T	30/30 degrees	Tilt Revolution	360° +		
Ramp	none	Capacity	5 ponds/2.3 kilos		
Linear	none				
Logarithmic	fixed	Overall Specifications			
Speed Limit	0 to 100%	Max height	78" (1.98 m)		
		Min height	31" (0.7874 m)		
		Folded length	34" (0.8636 m)		
		Center post adjustment	15" (0.381 m)		
		Weight	9 lb (4.08 kg)		
		Max Tripod load	25 lb (11.34 kg)		